An Analysis on the Pedagogical Aspects of Number Theory to School Students

Nitin Jain
Choithram International, Indore nitin.jain@choithraminternational.com

Problem 1

If p and $p^{2}+2$ are prime numbers, will $p^{3}+2$ also prime? If so, for how many primes p, will this be true?

Discussion

Since p and $\mathrm{p}^{2}+2$ are primes so p can't be an even number i.e. 2
(otherwise $\mathrm{p}^{2}+2$ won't be prime).
If we take $p=3$ (prime) then $p^{2}+2=11$ (also prime) and $p^{3}+2=27+2=29$, which is also prime. Hence the statement is true for $p=3$.

Now we need to explore if there are any other primes which satisfy this condition.

Let p be any prime number >3 and can be written as $\mathrm{p}=3 \mathrm{n}+1$ or $\mathrm{p}=3 \mathrm{n}+2$.
Case1: If $p=3 n+1$, then

$$
\begin{aligned}
p^{2}+2 & =(3 n+1)^{2}+2 \\
& =9 n^{2}+6 n+3 \\
& =3\left(3 n^{2}+2 n+1\right), \text { which is not a prime. }
\end{aligned}
$$

Also $\mathrm{p}^{3}+2=(3 \mathrm{n}+1)^{3}+2=27 \mathrm{n}^{3}+27 \mathrm{n}^{2}+9 \mathrm{n}+1+2$

$$
\begin{aligned}
& =27 n^{3}+27 n^{2}+9 n+3 \\
& =3\left(9 n^{3}+9 n^{2}+3 n+1\right), \text { which is not a prime. }
\end{aligned}
$$

Case2: If $p=3 n+2$, then

$$
p^{2}+2=(3 n+2)^{2}+2
$$

$$
=9 n^{2}+12 n+6=3\left(3 n^{2}+4 n+2\right)
$$

which is not a prime.
Also $\mathrm{p}^{3}+2=(3 \mathrm{n}+2)^{3}+2$

$$
\begin{aligned}
& =27 n^{3}+54 n^{2}+36 n+8+2 \\
& =27 n^{3}+54 n^{2}+36 n+10 \\
& =3\left(9 n^{3}+18 n^{2}+12 n+3\right)+1, \text { this may be a prime. }
\end{aligned}
$$

Conclusion

Hence we can conclude that both p and $p^{2}+2$ are prime for only value $p=3$ and so the statement is true for only value, $p=3$, as $p^{3}+2=3^{3}+2=29$ which is also prime.

Problem 2

Do there exist natural numbers m and n such that $m^{2}+(m+1)^{2}=n^{4}+(n+1)^{4}$?

Discussion

Let us assume that there exist natural numbers m and n such that

$$
m^{2}+(m+1)^{2}=n^{4}+(n+1)^{4}
$$

Then

$$
\begin{aligned}
& m^{2}+m^{2}+2 m+1=n^{4}+n^{4}+4 n^{3}+6 n^{2}+4 n+1 \\
& \Rightarrow 2 m^{2}+2 m=2 n^{4}+4 n^{3}+6 n^{2}+4 n \\
& \Rightarrow m^{2}+m=n^{4}+2 n^{3}+3 n^{2}+2 n
\end{aligned}
$$

Now add 1 to both the sides,

$$
\begin{align*}
& \Rightarrow m^{2}+m+1=n^{4}+2 n^{3}+3 n^{2}+2 n+1 \\
& \Rightarrow m^{2}+m+1=n^{4}+n^{2}+1+2 n^{3}+2 n^{2}+2 n \\
& \Rightarrow m^{2}+m+1=\left(n^{2}+n+1\right)^{2} \ldots \ldots \ldots .(1) \tag{1}
\end{align*}
$$

Here right hand side is a perfect square, so left hand side should also be a perfect square. But

This, $\quad m^{2}<m^{2}+m+1<m^{2}+2 m+1 \quad g$ between two consє or $m^{2}<m^{2}+m+1<(m+1)^{2} \quad$ ot be a perfect squar .

Conclusion

Hence our assumption is wrong and there doesn't exist two natural numbers m and n for which $m^{2}+(m+1)^{2}=n^{4}+(n+1)^{4}$.

Problem 3

The four-digit number of the form (AABB) is a square of a number.
Find the possible values of A and B.

Discussion

Since it is given a four-digit number so $\mathrm{A}>0$ and B can be any digit between 0 and 9 (both inclusive).

The number (AABB) can be written as

$$
\begin{aligned}
& 1000 \mathrm{~A}+100 \mathrm{~A}+10 \mathrm{~B}+\mathrm{B} \\
& =1100 \mathrm{~A}+11 \mathrm{~B} \\
& =11(100 \mathrm{~A}+\mathrm{B})
\end{aligned}
$$

Since the number (AABB) is a perfect square and 11 is one of its factor so $100 \mathrm{~A}+\mathrm{B}$ must also be a multiple of 11 . Thus $100 \mathrm{~A}+\mathrm{B}$ must be equal to $11 \mathrm{p}^{2}$.

Also $100 \mathrm{~A}+\mathrm{B}$ must be a number of the form (A0B).
[For example if $A=2$ and $B=9$ so the number is 209]

Now for any three-digit number of the form (A0B) which is divisible by 11 then $A-0+B$ must be a multiple of 11 . In this case $A+B=11$

Thus the number (AABB) can be written as

$$
\begin{aligned}
& =11(100 A+B) \\
& =11(100 A+11-A) \\
& =11(99 A+11) \\
& =11^{2}(9 A+1)
\end{aligned}
$$

In order to be a complete square, $9 \mathrm{~A}+1$ must be a perfect square, which is true for only value $\mathrm{A}=7$.

Hence the only possible four-digit number is 7744 which is equal to 88^{2}.

Conclusion

Here are the possible values of A and B satisfying the equation $A+B=11$ in the following table. It is clear from the table that the only number which is a perfect square is 7744 .

A	B	(AABB)	(AABB) $=\mathbf{p}^{\mathbf{2}}$
$\mathbf{2}$	9	2299	
$\mathbf{3}$	8	3388	
$\mathbf{4}$	7	4477	
$\mathbf{5}$	6	5566	88^{2}
$\mathbf{6}$	5	6655	
$\mathbf{7}$	4	7744	
$\mathbf{8}$	3	8833	
$\mathbf{9}$	2	9922	

