<u>An Analysis on the Pedagogical Aspects of</u> <u>Number Theory to School Students</u>

Nitin Jain Choithram International, Indore nitin.jain@choithraminternational.com

Problem 1

If p and $p^2 + 2$ are prime numbers, will $p^3 + 2$ also prime? If so, for how many primes p, will this be true?

Discussion

Since p and $p^2 + 2$ are primes so p can't be an even number i.e. 2

(otherwise $p^2 + 2$ won't be prime).

If we take p = 3 (prime) then $p^2 + 2 = 11$ (also prime) and $p^3 + 2 = 27 + 2 = 29$, which is also prime. Hence the statement is true for p = 3.

Now we need to explore if there are any other primes which satisfy this condition.

Let p be any prime number > 3 and can be written as p = 3n + 1 or p = 3n + 2.

<u>Case1</u> : If p = 3n + 1, then
$p^2 + 2 = (3n + 1)^2 + 2$
$=9n^{2}+6n+3$
$= 3 (3n^2 + 2n + 1)$, which is not a prime.
Also $p^3 + 2 = (3n + 1)^3 + 2 = 27n^3 + 27n^2 + 9n + 1 + 2$

 $= 27n^3 + 27n^2 + 9n + 3$

 $= 3 (9n^3 + 9n^2 + 3n + 1)$, which is not a prime.

<u>Case2</u>: If p = 3n + 2, then

 $p^2 + 2 = (3n + 2)^2 + 2$

$$= 9n^{2} + 12n + 6 = 3(3n^{2} + 4n + 2),$$

which is not a prime.

Also
$$p^3 + 2 = (3n + 2)^3 + 2$$

= $27n^3 + 54n^2 + 36n + 8 + 2$
= $27n^3 + 54n^2 + 36n + 10$
= $3(9n^3 + 18n^2 + 12n + 3) + 1$, this may be a prime.

Conclusion

Hence we can conclude that both p and $p^2 + 2$ are prime for only value p = 3 and so the statement is true for only value, p = 3, as $p^3 + 2 = 3^3 + 2 = 29$ which is also prime.

Problem 2

Do there exist natural numbers m and n such that $m^2 + (m + 1)^2 = n^4 + (n + 1)^4$?

Discussion

Let us assume that there exist natural numbers m and n such that

$$m^{2} + (m + 1)^{2} = n^{4} + (n + 1)^{4}$$

Then

$$m^{2} + m^{2} + 2m + 1 = n^{4} + n^{4} + 4 n^{3} + 6 n^{2} + 4n + 1$$

$$\Rightarrow 2m^{2} + 2m = 2n^{4} + 4 n^{3} + 6 n^{2} + 4n$$

$$\Rightarrow m^{2} + m = n^{4} + 2 n^{3} + 3 n^{2} + 2n$$

Now add 1 to both the sides,

Here right hand side is a perfect square, so left hand side should also be a perfect square. But

This $m^2 < m^2 + m + 1 < m^2 + 2m + 1$ conse or $m^2 < m^2 + m + 1 < (m + 1)^2$ g between two tot be a perfect square.

Conclusion

Hence our assumption is wrong and there doesn't exist two natural numbers m and n for which $m^2 + (m + 1)^2 = n^4 + (n + 1)^4$.

Problem 3

The four-digit number of the form (AABB) is a square of a number.

Find the possible values of A and B.

Discussion

Since it is given a four-digit number so A > 0 and B can be any digit between 0 and 9 (both inclusive).

The number (AABB) can be written as

1000A + 100A + 10B + B = 1100A + 11B = 11 (100A + B)

Since the number (AABB) is a perfect square and 11 is one of its factor so

100A + B must also be a multiple of 11. Thus 100A + B must be equal to $11p^2$.

Also 100A + B must be a number of the form (A0B).

[For example if A = 2 and B = 9 so the number is 209]

Now for any three-digit number of the form (A0B) which is divisible by 11 then A – 0 + B must be a multiple of 11. In this case A + B = 11

Thus the number (AABB) can be written as

= 11 (100A + B) = 11 (100A + 11 - A) = 11 (99A + 11) = 11² (9A + 1)

In order to be a complete square, 9A + 1 must be a perfect square, which is true for only value A = 7.

Hence the only possible four-digit number is 7744 which is equal to 88².

Conclusion

Here are the possible values of A and B satisfying the equation A + B = 11 in the following table. It is clear from the table that the only number which is a perfect square is 7744.

Α	В	(AABB)	(AABB) = p ²
2	9	2299	
3	8	3388	
4	7	4477	
5	6	5566	
6	5	6655	
7	4	7744	88 ²
8	3	8833	
9	2	9922	